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Multi-threading Use In CMS

Multiple threads used for standard work

Have run reconstruction step with 4 threads
» prompt data usage for all LHC Run 2
* Monte Carlo production since Summer 2016

Running HLT 4 with threads since September of 2015

Simulation step with 4 threads will start Winter 2016
* Capability has been tested since Summer 2015

Only supported having one thread per concurrent event
Referred to in this talk as Original

Only using 4 threads per job since

Has good CPU efficiency
Sufficient to staying within memory limits of worker nodes
Keeps the number of simultaneous jobs controlled by workflow management to a workable limit
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Processing Stalls

Sharing resources across concurrently running events leads to thread stalls

Examples

All reads from ROOT input file must be serialized

Writing to a ROOT output file must be serialized
* Note: can write to different ROOT output files simultaneously

Legacy modules are not thread safe so the framework will only run one at a time

One thread per event implementation ran modules in fixed order
Could not schedule around algorithm waiting for a shared resource
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Stall Demonstration

Simple configuration to demonstrate stalls

Reads from input file
Two legacy modules which cannot run simultaneously
Five additional modules which are thread-safe

Data dependencies between modules constrain allowed concurrency
* Note: modules wait until all their data has been made available from other modules

Thread-Unsafe Legacy

Thread-Safe

Input
e ——
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Example Stall with Original Implementation

IFour concurrent event loops

Each loop is referred to as a stream
Each loop can only use one thread

Green is when a module is running in stream
White is when no module running in stream

Red is when a stalled module is running

White precedes red when a stall happens

Module stalls because it can not run concurrently
and another stream is running the module
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Stall Mitigation using Multiple Threads per Concurrent Event (1)

All independent sequences of event filtering modules are started simultancously
Within a sequence the modules must be run within the set order
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Stall Mitigation using Multiple Threads per Concurrent Event (2)

Data for modules are prefetched asynchronously

Provides a large number of tasks for TBB to schedule
Module starts after prefetches have finished
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Stall Mitigation using Multiple Threads per Concurrent Event (3)

A shared resource is guarded by a serial task queue

Modules needing the resource have their ‘to run’ task placed in the appropriate queue
When a task from a queue finishes, it automatically starts the next task in the queue
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Four threads with four streams

Blue when multiple modules running in a stream

Height of blue bar proportional to number of running
modules

Blue on one stream corresponds to white on
another
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Example Stall Mitigation with Multiple Threads

FIVG threads Wlth f()U.I’ stréams modules running stalled module running
multiple modules running

Stalls greatly mitigated ' ! .
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Realistic Demonstration Measurements

Machine for testing
Westmere-EP L5640 CPU with 6 cores x 2 hyper-threads

Compared Reconstruction jobs

Original one-thread-per-event
Concurrent modules per event with number threads == number of streams
Concurrent modules per event with number threads == 12

Reconstruction configuration summary

3 output modules
1780 other modules
21 filter sequences
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Event Throughput Comparison
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Reconstruction with 8 Threads and 6 Concurrent Events

modules running stalled module running
Stalls are solely caused by one output module multiple modules running

7
The one which takes longest per event

Dynamic scheduling allows stall mitigation
Can reorder legacy modules and other output modules
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Memory Utilization per Stream

High initial memory
~2 GB

Memory grows slowly w.r.t number of streams
~150 MB/stream

Increasing number of threads does not noticeably
increase memory usage
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Total Throughput vs Memory for Fully Loaded Machine
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Conclusion

CMS has successtully utilized multi-threaded processing jobs
All prompt reconstruction for Run 2 were multi-threaded jobs

YT
Allowing multiple threads per event will allow N
processing of more memory intensive jobs
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utilization of machines with lower memory per core limits
Greater threading efficiency is important as CMS is
continually increases its utilization of multi-threading
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